
School of Electronics and Computer Science
Faculty of Physical and Applied Sciences

University of Southampton

Alex Parker

April 15, 2012

WikiTime
A system that extracts temporal events from Wikipedia

Supervisor: Dr Adam Prugel-Bennett

Second Examiner: Professor R.I. Damper

A project report submitted for the award of

Bsc Computer Science

Abstract

The internet is a large source of information but there is no easy way to view historical
events mentioned within each page in a structured way, such as on a Timeline. This
project plans to extract and semantically link historical events and dates, such as the
births and deaths of famous figures, and enter them into a search engine so that they
can be searched and viewed on a Timeline.

This project presents a working system that extracts historical events from the full
English Wikipedia and displays them on a Timeline, and evaluates the applications and
effectiveness of this system in an academic and educational context.

1

Contents

1 Introduction 4
1.1 Project Goals . 4
1.2 Scope . 5

1.2.1 Temporal Event Extraction . 5
1.2.2 Indexing and Display . 5

2 Background 6
2.1 Related Work . 6
2.2 Event Extraction . 7

3 Prototype 8
3.1 Map Reduce Prototype . 10

4 Final System 11
4.1 Event Extraction Process . 11

4.1.1 Extractor and Indexer . 11
4.1.2 Date Extraction Algorithm . 13
4.1.3 Indexing . 15
4.1.4 Duplicate Remover . 16
4.1.5 Page Rank . 18
4.1.6 Page Rank Algorithm . 19

4.2 Website . 20
4.2.1 User Interface . 20

5 Testing 23
5.1 Unit Testing . 23

5.1.1 Event Extraction Unit Tests . 24
5.1.2 Website Unit Tests . 25

5.2 Event Extraction Accuracy . 25
5.3 Event Extraction Performance . 26
5.4 Frontend Performance . 28

6 User Evaluation 28
6.1 Usability Evaluation . 29
6.2 User Feedback . 30

7 Project Management 31

8 Conclusion 34
8.1 Further Work . 34
8.2 Evaluation . 35

Appendix 40

2

Appendix A: Questionaire Protocol . 40
Appendix B: Questionaire . 43
Appendix C: Project Brief . 46
Appendix D: Software CD . 47

3

1 Introduction

The internet taken as a whole is a massive source of information of a scale never seen
before, leading to an information overload where the background noise of low quality
information can block out the useful information [5].

Simple filtering and categorisation of this information is a problem which has been solved
by modern web search engines through the use of the Page Rank1 and Map Reduce2

algorithms. However the user must still search the pages linked by the search engine for
the answer to their query, again leading to information overload [5]. This is a problem
that can be reduced by specialising the search interface to the user’s query.

A lot of information available online is related to historical events, and the traditional
web search interface does not provide access to this information easily. For example,
the Battle of Hastings page on Wikipedia contains the following sentence “The Battle
of Hastings occurred on 14 October 1066 during the Norman conquest of England”[44],
but for the user to discover this fact they must open and read the page after searching
for “Battle of Hastings” in a web search engine. The problem is caused by the search
engine interface not being personalised to the user’s needs [20].

This project presents a system that extracts dates and times mentioned within web pages
within a searchable interface, effectively summarizing events in history automatically,
providing the user with an overview of the topic they are searching for.

Wikipedia is used as the primary source of information for this project as it is a largely
well written source of information for historical events, and it is assumed that for the
purpose of this work Wikipedia is reasonably accurate. A number of academic studies
have used Wikipedia as their primary data source for research, and regard it as a source
worthy of research and publication in academic journals [32].

1.1 Project Goals

The goals of this project are to demonstrate a system that can parse and extract historical
events from Wikipedia and render them on a searchable Timeline interface. This problem
can be split into two parts; the extraction and search indexing of temporal events from
Wikipedia and the display of this information in a searchable interface to generate a
Timeline. The search interface should allow for queries to be run within a specified date
range and with additional filters such as the page the event was extracted from.

1An algorithm that models a random web surfer that either clicks a link or jumps to another page
and determines page ranking by the probability of a surfer ending up on that page.

2A distributed computing algorithm that allows a problem to scaled to clusters of machines easily.

4

1.2 Scope

This project will focus on articles contained within Wikipedia as it is a large source
of mostly accurate and well written information [32]. Wikipedia was also selected as a
source since snapshots of the entire encyclopaedia are freely available permitting the
project to focus on the event extraction and display. A web crawler3 will not be used
since Wikipedia limits web crawler requests to request 1 per second [46].

1.2.1 Temporal Event Extraction

The extraction of events from Wikipedia presents many different problems. The first
problem is related to the scale of Wikipedia itself. Wikipedia as of December 2011
contains 3,817,405 articles in English [45], so the system must be capable of scaling to
this amount of information. To resolve this problem care will be taken to ensure the code
can be run on multiple threads and possibly distributed over a cluster of machines.

Another problem is with the definition of a temporal event. Dates and times in English
sentences can be relative to events mentioned earlier, and can be mentioned in many
different formats with inconsistencies between them. For example the date 08/12/11
could be the 8th of December in the UK or the 12th of August in the US. The system
will not attempt to process relative times such as “last Wednesday” as this may not be
useful in a historical context. Additionally dates that are defined in a shorthand form
such as “08/12/11” as there is too much variation in formats to assume that the correct
date can be extracted. Finally to simplify the extraction the system will ignore any time
references such as “8 pm” or “18:30”, again because there are many ways to represent
time in English.

A further problem is related to the categorisation and extraction of the context sur-
rounding the temporal event, i.e. what does the event actually mean? This project will
attempt to extract the sentence that contains the date reference as well as the page title
it came from. Additionally named entities, such as a famous person or place mentioned
in the page will be extracted and stored as part of the event to attempt to provide
context to the event.

1.2.2 Indexing and Display

Once all of the events have been extracted from Wikipedia they need to be made search-
able by keyword and date range. The system will use a software library to do this, such
as Lucene4. To help with the prioritisation of pages a Page Rank algorithm will be used
by measuring the importance of the current page being processed.

3A program that browses the world wide web to gather information
4A high performance text engine search library

5

Since multiple pages will be processed by this system it is possible for events to be
repeated multiple times, especially for important events in history. The system will
attempt to remove these duplicates and incorporate them into the event ranking, since
multiple events are likely to be more important than events mentioned once.

The final problem is the display of the Timeline results to the user, as it needs to show
the ranking of the events and their position on the Timeline relative to each other.

2 Background

Since the scope of this project covers many different topics a wide range of background
reading was required, including the documentation of the various software tools that
were used.

Daniel Rosenburg in the book “Cartographies of Time” found that “the timeline is one
of the central organizing features of the contemporary user interface”[37] and that the
sheer volume of information available on the world wide web makes indexing systems
highly valuable. Additionally he feels that the scope of these “Web 2.0” timelines are
far larger and more extensive than those seen before, but that it remains to be seen
whether these new systems can provide an adequate historical viewpoint compared with
timelines found in museums.

2.1 Related Work

DBpedia is a research project that aims to produce a “semantic web mirror” of Wikipedia
by converting structured information extracted from Wikipedia into RDF5, making it
freely available on the internet [4]. RDF is the data format used to link structured
information available from different sources together into a “global data space”[9]. The
DBPedia project extracts the information by examining the info boxes that are contained
on most Wikipedia articles which describe people, places, music albums, films, video
games, organisations and diseases in a structured way.

In the “Extraction of Temporal Facts and Events from Wikipedia” Master Thesis [27]
Erdal Kuzey examines the extraction of historical facts from Wikipedia into an RDF
ontology, specifying an algorithm that examines the info boxes, similarly to the dbpedia
project [4], but with a heavier focus on the dates involved. The thesis also examines
extraction from free text within the the article paragraphs, first by attempting to nor-
malize dates within the text to a standard format, and then extracting temporal facts
matching these with well known base facts previously extracted from the info boxes.
The limitations of this approach are that it is very intensive, and requires consideration

5Resource Description Format

6

of every type of info box that is available on Wikipedia, so a parser must be written to
process each info box type, with similar issues found in the free text extraction.

The WikiTime project aims to take a different approach to this information extraction
problem by focusing on the paragraphs in the articles themselves, meaning that concepts
and information not provided in an info box will be extracted, at the cost of lower
accuracy.

2.2 Event Extraction

A lot of research has focused on the extraction of temporal information from business
news, pulling in concepts from the fields of Information Extraction6 and Computational
Linguistics7. Much of the research focused on the extraction of relative time references
such as “yesterday” or “last week”; the Time-Indexer tool defined a set of rules that
would map these references to a standardised time format in terms of hours, days,
weeks, months, years, etc. The rules were implemented as a finite state machine that
would read the input text [24].

Other research dealt with the fact that the majority of temporal expressions are under-
specified or fuzzy i.e. missing the time or month that the event occurred [10], or that
the event occurred around a non-specific time such as “last week” [25]. For this project
relative temporal expressions such as “last month” or “tomorrow”) will be ignored since
these terms do not generally appear in Wikipedia, however an attempt to deal with
absolute events that are underspecified and fuzzy will be made.

For the extracted events to make sense they must be placed in context. The project will
achieve this by extracting the sentence that contains the time reference. Sentence Ex-
traction is a well known problem in Computational Linguistics which is commonly solved
through the use of lists of hand-authored regular expressions and common abbreviations,
which become specialised to the text area they are extracting [1]. An alternative method
is to produce a statistical model of sentence boundaries from a corpus text [18].

To provide additional context an attempt to extract named entities will be made, where
a named entity is defined as a person, place or company. This is another well known
problem in Computational Linguistics which is approached similarly to the sentence
boundary detection problem. Researchers approach this problem in three ways; hand
crafted rules, machine learning and hybrid detection schemes [40].

Many software libraries exist to support these tasks in Computational Linguistics in
multiple programming languages. The perl Lingua::EN::NamedEntity module used in
the prototype uses rule-based techniques to extract and classify entities from free text
[38]. The Apache OpenNLP [15] and the Stanford NER [23] libraries written in Java use

6The extraction of structured information from unstructured documents
7The statistical or rule-based modelling and processing of natural language

7

trained statistical models to extract sentences, tokenize sentences into words and extract
named entities.

Important events extracted from Wikipedia are duplicated multiple times, creating a
lot of noise, therefore the duplicated events must be removed. There is a lot of prior
work in this area detecting the similarity between sentences for academic plagiarism and
duplicate removal in search engines. Since many of the algorithms used for near-duplicate
detection do not work well on short texts, as it is more difficult to extract effective
features of that text [42]. Qi Zhang et. al. outline a method to apply partial-duplicate
detection to the map reduce algorithm to permit the processing of large amounts of text,
which will be required since Wikipedia contains millions of pages so will extract millions
of events [48].

Figure 1: Map Reduce algorithm (Sourced from [48])

The map reduce algorithm allows data intensive tasks to be spread over clusters of
machines easily. As shown in Figure 1 the input is split into multiple map processes
which output key-value pairs. Each key-value pair is then grouped and sorted as input
into multiple reduce processes, which provide the final output [43].

3 Prototype

To better understand the issues surrounding the project goals a prototype has been
created that processes the Simple English Wikipedia. The Simple English Wikipedia
was selected because it was smaller allowing for fast iteration on the indexing routines.
Figure 2 shows the search interface that was developed displaying the events extracted
from the “Jackie Chan” biography page on the Simple English Wikipedia.

The system is split into 2 parts; the extraction and indexing of events and the pre-
sentation of those events in a website. Perl was selected for the prototype because it
has good support for regular expressions as well as many useful modules to solve prob-
lems such as sentence parsing, named entity extraction, search indexing and database

8

Figure 2: Prototype Timeline output for Jackie Chan’s biography page.

connectivity.

Figure 3: Prototype System Design

Figure 3 shows how the large XML snapshot of Wikipedia is processed by the system.
First in the splitting script the XML file is read and each article is inserted as rows
into the database. Next in the parsing script the article is converted from Wikipedia
syntax into plain text and split into sentences with the perl Lingua::EN::Sentence module
[47].

Each sentence is then inserted into the database if it contains a date reference which
is implemented as a regular expression search. If a sentence contains multiple date
references then only the earliest date and the most recent date are recorded. Once an
event has been identified named entities are extracted from the sentence with the perl

9

Figure 4: Prototype Database Design

Lingua::EN::NamedEntity module [38] which are inserted as rows into the EntityList
and Entities table shown in Figure 4.

Once all of the events have been extracted the Event Indexer builds a Lucene index
making the events searchable by the front end. The perl Lucy module was used to
achieve this [14]. Finally the events are displayed on a Timeline on the website frontend
making use of the database and Lucene index.

3.1 Map Reduce Prototype

Figure 5: Map Reduce Prototype Pipeline

Additionally a prototype making use of the Map Reduce algorithm was created. This
system uses the Apache Hadoop software libraryhadoop to process Wikipedia XML
dumps into a Lucene index in a single map-reduce operation. It works by using an
XML Input Splitter to get each Wikipedia article as input into the map operation. The
mapper then outputs a JSON8 string representing the Wikipedia page.

Each page is then input to the reduce operator which runs a perl script which parses the
article into plain text, splits it into sentences and then extracts events from those sen-
tences. Each sentence is then inserted into a single Lucene index. The reduce operation
then compresses this index and copies it to the output directory. Once the map reduce
operation is complete a perl script extracts the multiple compressed Lucene indexes and
merges them into a single Lucene index.

The front end used in the prototype was also updated to exclusively use the Lucene
index to get the data, as this was found to be more scalable than inserting the events
into a separate SQL database.

8JavaScript Object Notation

10

4 Final System

The final system processes the full 20GB English Wikipedia XML Dump into a Lucene
index which can be searched via a website.

Java was selected for the final system because dependent libraries can be packaged in
a jar file making it more portable than Perl, where dependencies must be installed via
a package manager such as CPAN. Additionally Java has high quality IDEs9 such as
Eclipse which allows for easier debugging and unit testing. Finally Java is faster than
Perl in most situations [17].

4.1 Event Extraction Process

Figure 6: Event Extraction Process Overview

The event extraction process is outlined in figure 6, showing the processing stages taken
to extract the events from a Wikipedia XML dump. First the XML file is processed into
events and indexed into a Lucene index. This Lucene index is then processed to reduce
duplicate events into a single event which is ranked higher in the search results. The
de-duplicated index is then ranked so that more important Wikipedia pages are higher
in the search results, where important Wikipedia pages are found using the “Page Rank”
algorithm [7].

Due to the requirement to process large amounts of information quickly a generic frame-
work was written to allow processing to run on multiple threads. Figure 7 shows the
Reader<T>, Writer<T> and Processor classes which are extended to implement a flex-
ible processing pipeline. The Processor.Run() method reads objects of type T from the
Reader<T> class and inserts them into a queue. These items are then removed from
the queue on multiple threads and processed by the Writer<T> class.

4.1.1 Extractor and Indexer

As shown in Figure 8 the Extractor and Indexer stage takes the Wikipedia XML Dump
and splits it using the WikipediaReader class shown in Figure 7. This outputs a String
containing the content between the <page>...</page> XML elements. The EventPro-
cessor class takes this String and parses it into multiple Event classes, parsing the
Wikipedia syntax into articles with the Article class and extracting the events with the

9Integrated Development Environment

11

Figure 7: Event Extractor System Class Diagram

12

Figure 8: Event Extraction Process

EventExtractor class. Finally these events are indexed by the EventIndexer class into a
Lucene index.

The Article class uses the Java Wikipedia API [22] which parses the Wikipedia markup
language into a syntax tree. The custom PlainTextConverter class converts this syntax
into plain text ignoring tables, images and bullet point lists. The Java Wikipedia API
was selected because it gives better results than the Perl prototype which used regular
expressions to evaluate the syntax.

The EventExtractor class is used to extract the article text into events using the ex-
tractEvents() function. The Event Extraction algorithm uses the Stanford Named En-
tity Recognizer [23] to split the text into sentences and tokens and find named entities.
The Stanford NER is a statistical classifier which classifies text from training data and
uses a three class model which finds Locations (e.g. “London”), People (e.g. “Albert
Einstein”) and Organisations (e.g. “University of Southampton”). The classifier works
by labelling each token with its classification (None, Location, People, Organisation)
based upon nearby tokens.

At an earlier stage of the project the Apache OpenNLP Named Entity Recognizer [15]
was used instead of the Stanford NER library. The Stanford NER was selected for the
final system because it provides better extraction results and copes with multi-threaded
API calls better. See section 5 for performance and extraction comparisons.

4.1.2 Date Extraction Algorithm

The date extraction algorithm shown in figure 9 is used by the EventExtractor class to
find dates within a sentence, and operates on a single sentence which has been split into
tokens. The algorithm works by remembering months (January, February, etc.) and
dates (18th, 1st) seen so far, resetting them when text is seen but continuing if there is
punctuation or other characters. If a year is detected then a new date is created with
the stored month and day values, and the date is inverted if “BC” is found in the next
token, permitting handling of BC dates.

This algorithm detects dates that are missing information, such as “1983” and “January
1920”, different orderings of information, such as “March 18th 1530” and “18th March
1530”, and dates that are separated by punctuation such as “(May 17th, 1935)”.

Since the algorithm iterates over the whole sentence multiple dates can be detected which
can lead to problems if more than 2 dates are detected, as shown in this extract from

13

function extractDate(sentence)
dates← {}
year ← −1
month← −1
for word ∈ sentence do

if word matches / ∧ [0− 9][0− 9][0− 9][0− 9]?/ then . Match a year
year ← word
if year < 2050 ∧ year ≥ 100 then

if day = −1 then
day ← 1

end if
if month = −1 then

month← 1
end if
if word→ next = ”bc” then . Handle BC Dates

year ← −year
end if
dates← dates ∪ date(day,month, year)

end if
else if word matches / ∧ [0− 9][0− 9]?/ then . Match a day

day ← word
else if word matches /(january|...|december)/ then . Match a month

month← word
else if word matches /[A− Za− z]/ then . Match text

day ← −1
month← −1

end if
end for
return dates

end function

Figure 9: Date Extraction Algorithm

14

the Abraham Wikipedia Article:

“Many artists have been inspired by the life of Abraham: Albrecht Dürer
(1471–1528), Caravaggio (1573–1610), Rembrandt van Rijn (Dutch, 1606–
1669) created at least seven works on Abraham, Petrus-Paulus Rubens (1577–
1640) did several, Donatello, Raphael, Philip van Dyck (Dutch painter, 1680–
1753), Marc Chagall did at least five on Abraham, Gustave Doré (French
illustrator, 1832–1883) did six, Claude Lorrain (French painter, 1600–1682),
James Jacques Joseph Tissot (French painter and illustrator, 1836–1902) did
over twenty works on the subject .” [2]

The final system selects the earliest and latest dates in the sentence creating an event
that spans from 1471 to 1902, which is difficult to display in the user interface.

An additional problem is that years can get confused with amounts, for example a
kilobyte has 1024 bytes but Pope Benedict VIII also died in 1024. Earlier prototypes
attempted to resolve this problem by ignoring dates less than 1000 and more than 2050,
but this still doesn’t solve the 1024 problem. The final system attempts to solve this by
calculating the median and average absolute deviation of all of the extracted dates in
the current page, discarding events that are more than three absolute deviations away
from the median.

Figure 10 shows the frequency of extracted events for different date ranges on a selection
of Wikipedia articles. The AMD article has a lot of dates around 2000 which causes the
numbers around 1250 and 750 to be discarded, which is correct. The King Alfred article
has most of the events focused around 800 which causes the later events to be removed.
None of the events are discarded in the Albert Einstein article as the total events are
evenly spread out. The numbers around 1800 in the Byte article are not discarded as
there are not enough correct events in 1990 to exclude them.

4.1.3 Indexing

The EventIndexer class indexes events into a Lucene index, using the Java Lucene Li-
brary [13]. Figure 11 shows which fields are inserted into the Lucene index.

Lucene uses text analyzers to process the text to allow for keyword searches. The
org.apache.lucene.analysis.en.EnglishAnalyzer class is used for the content, name, place,
org, eras and sig fields, whilst the org.apache.lucene.analysis.KeywordAnalyzer is used for
the title field. The EnglishAnalyzer class splits the text into tokens with the StandardTo-
kenizer class, converts them to lowercase with the LowerCaseFilter class, removes a set
of common stop words with the TokenFilter class and finally runs the Porter Stemming
Algorithm [34] which is implemented by the SnowballFilter class. The Porter Stem-
ming Algorithm removes suffixes from a word returning the common stem, for example
CONNECT is the stem word for:

15

 0

 2

 4

 6

 8

 10

 12

 14

 1890 1908 1926 1944 1962 1980

Fr
eq

ue
nc

y

Date

(a) Albert Einstein

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 750 1004 1258 1512 1766 2020

Fr
eq

ue
nc

y

Date

(b) AMD

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 719 977 1235 1493 1751 2009

Fr
eq

ue
nc

y

Date

(c) King Alfred

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 120 494 868 1242 1616 1990

Fr
eq

ue
nc

y

Date

(d) Byte

Figure 10: Histograms showing extracted dates

CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

The KeywordAnalyzer class returns the whole string of the document, meaning that a
query must match the string precisely. This allows for direct searches by page title,
making it possible to link from Wikipedia pages back into the WikiTime page.

The eras field is generated from the start and end date and allows for searches such
as “18th Century Painters” and “1990s Films”. It generates three descriptions of the
current date; the century (“20th Century”, “1900s”) and the decade (“1960s”).

4.1.4 Duplicate Remover

Once the Wikipedia XML Dump has been extracted into events and indexed into a
Lucene index the next stage reduces duplicate events into a single event. The duplicate

16

Name Description Stored Analyzed

content Extracted sentence Y Y

pageid Unique article number Y N

title Article title Y Y

fromdate Event start date in format “YYYY,MM,DD” Y N

todate Event end date in format “YYYY,MM,DD” Y N

name List of people mentioned in the sentence Y Y

place List of locations mentioned in the sentence Y Y

org List of organizations mentioned in the sentence Y Y

eras List of era descriptions (e.g. “19th Century, 1800s”) Y Y

sig Spot Signature used for duplicate removal Y Y

Figure 11: Indexed Fields

Figure 12: Duplicate Removal Process

removal process is outlined in Figure 12 and starts by reading the events from the Lucene
index using the EventIndexReader class shown in Figure 7 which outputs Event objects
into the DuplicateProcessor class. The DuplicateProcessor class outputs a single event
for each duplicate event which is indexed into an additional, temporary index called
index.dups by the DocumentWriter class. Once indexing is complete the index and
index.dups indexes are merged to form the final de-duplicated Lucene index.

The duplicate removal process uses an implementation of the spot signatures algorithm
that detects near duplicates in large web collections [41]. It works by generating a spot
signature of the text you wish to detect duplicates with by extracting words surrounding
stopwords10 in the text. Some examples are shown in Figure 13.

The DuplicateProcessor generates a spot signature for the current event, and then
searches the index for events that have similar spot signatures with the same date range.
This produces a list of duplicate results which are deleted if the event’s weight11 is ≥ 10
and then the first event is output to the DocumentWriter with its weighting set to the
number of duplicates it replaced.

10Frequently occurring words in the english language, e.g. “and”, “the” and “this”
11The event’s similarity score

17

“Maria Matilda Ogilvie Gordon (30 April 1864 – 24 June 1939) was a 19th
century Scottish scientist.“

[maria:maria:matilda:ogilvie, was:19th:century:scottish]

“The Aragonese Crusade, or Crusade of Aragón, was declared by Pope
Martin IV against the King of Aragón, Peter III the Great, in 1284 and
1285.”

[the:aragonese:crusade:or, of:aragn:declared:pope,

the:king:aragn:peter, the:great:1284:and]

“The Dutch post-Impressionist painter Vincent van Gogh lived in Arles in
1888-1889 and produced over 300 paintings and drawings during his time
there.”

[the:dutch:postimpressionist:painter, in:arles:18881889:and]

“The first University of Southampton degrees were awarded on 4 July 1953,
following the appointment of the Duke of Wellington as Chancellor of the
University.”

[the:first:university:southampton, were:awarded:on:4,

the:appointment:duke:wellington]

Figure 13: Spot Signatures generated by the algorithm

4.1.5 Page Rank

Figure 14 shows the page ranking process, which is implemented by the PageRank class
shown in Figure 7. First the Wikipedia XML Dump is read into the PageReader class
which creates a hash table mapping page identifiers to Page objects. Next the Wikipedia
XML Dump is read into the LinkExtractor class which extracts the outward links from
each page using the hash map from the first step to build a list of pointers to the Page
objects in the map. Each page object is also added to a list of all pages, and the hash
table mapping is deleted.

Next the page list is read using the ListReader<T> class into the LinkGraph class
which turns the outward links list into an inward links list, and counts the total number
of outward links from each page. At this point the PageRank.doPageRank() function
runs the Page Rank algorithm on the link graph. Finally, the PageRank.outputIndex()
function searches through the existing index for each page and inserts each event into
a new index.ranked folder, multiplying each event’s weight by the current page Page
Ranking.

18

Figure 14: Page Rank Process

4.1.6 Page Rank Algorithm

The Page Ranking algorithm is used to rank important events higher in search results
over less important events. A Page Rank is the probability that a random web server
clicking on links ends up on a particular page, and the Page Ranking algorithm works by
measuring the “link popularity” between pages where the pages with the most incoming
links get a higher search ranking [7].

The algorithm starts by assigning an equal probability to each webpage. So the initial
page rank for each page pi for N pages when iteration t = 0 is:

PR(pi, 0) =
1

N

Next the algorithm iterates over t with the total number of links for the page defined
as L(p) and the links for the page defined as M(p). A random surfer value d is added
to allow the random web surfer to move to a random page, which is usually set to
0.85.

PR(pi, t+ 1) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj , t)

L(pj)

The algorithm iterates until for some small ε:

19

∑
∀p
|PR(pi, t+ 1)− PR(pi, t)| < ε

4.2 Website

The Website displays the events on an interactive timeline that the user can zoom
through and navigate easily. The website server is written with the Java Restlet web
framework [28] which enables implementation of a REST12 API allowing the user in-
terface to make AJAX calls improving the user experience and the use of “Cool URIs”
[6] such as “http://wikitime.ecs.soton.ac.uk/search/?newton” providing flexibility for the
future expansion of the project website.

Figure 15 shows the main classes used for the web server. The WikiTimeSite class starts
up the internal web server and registers the REST search API and website pages. The
Page class represents a single page on the website and loads the page contents into
memory on startup to allow for fast response times.

The SearchResource class implements the search API (“/api/search/newton”) and for-
mats and outputs events returned from the Searcher class in JSON format. JSON was
selected as the search API output format because it can be easily parsed in JavaScript
via the “eval()” method. The Searcher class opens the Lucene text index and builds
suitable queries using the Lucene MultiFieldQueryParser class.

4.2.1 User Interface

The user interface consists of two pages; the home page and the search results page which
are written in HTML, CSS and Javascript. For the search page the JQuery library[36]
is used to make the AJAX calls to the REST server API which is combined with the
JQuery history plugin [29] to provide browser navigation. The Simile Widgets Timeline
library [21] is used to display the events on a Timeline and the JQuery UI library [35]
implements the scroll bar at the bottom of the screen. Finally the labels javascript
library [3] displays the “Search” placeholder text in the search fields found on the home
page and search results page and the CSS reset tool [30] is used to unify the CSS layout
between browsers.

The Timeline layout provided by the Simile Timeline Widget didn’t display the ordering
of events by priority meaning that less important events would end up at the top of the
results page instead of the bottom and vice versa. This was resolved by writing a custom
layout algorithm which positions the most important events first, pushing subsequent
events down only if they overlap with an existing event. The overlap detection works by
storing the minimum and maximum date found on each track.

12Representational State Transfer

20

Figure 15: Server Class Diagram

An additional problem with the interface was that a small number of unimportant events
would appear far away from the majority of the results with a large horizontal spacing
between them, forcing the the display to zoom out. This was resolved by calculating the
average year and standard deviation for the event results which was used to select the
initial view position and zoom level.

21

(a) “/” - Homepage

(b) “/search?” - Search Results Page

Figure 16: Website Screenshots

22

5 Testing

Various aspects of the final system were tested to ensure it met the functional and
performance requirements of the system design. Unit testing was employed to ensure
functional requirements were met for the various parts of the system. Additionally
performance comparisons between the various prototype event extraction algorithms
were made both in terms of performance in pages per second and in the accuracy of the
extracted information.

5.1 Unit Testing

Unit test code was written with the JUnit unit testing framework[26]. Tests were written
for the website server and for the event extraction and processing framework.

23

5.1.1 Event Extraction Unit Tests

Name Description

ArticleTest.testSimpleArticle() Tests that the Article class parses the
Wikipedia XML dump correctly into plain
text with the correct fields (pageid, title, con-
tent, external links) ensuring that the content
doesn’t contain any Wikipedia markup.

ArticleTest.testArticle() Tests the Article class alternative constructor
that takes the page title and content only

DateTest.testEqual() Tests the Date.equals(Date) function

DateTest.testAfter() Ensures the Date.after(Date) function works
correctly

DateTest.testFormat() Tests that the Date.format() function re-
turns dates in the expected format, e.g.
“1984,05,01” for the 1st of May 1984

DateTest.testString() Tests that a Date can be converted to and from
a String correctly

DateTest.testEra() Tests that the Date’s era (e.g. “19th Century”
and “1890s”) is extracted correctly

EventTest.testEvent() Tests that the event information is extracted
correctly

EventTest.testString() Tests that an event can be converted to and
from a String correctly

ExtractorTest.testExtraction() Tests that events are extracted from a sample
Wikipedia article

ExtractorTest.testBabylon() Tests event extraction from the Babylon
Wikipedia article ensuring that all extracted
events are BC events

ExtractorTest.testByte() Tests event extraction from the Byte
Wikipedia article

ExtractorTest.testAMD() Tests event extraction from the AMD
Wikipedia article

ExtractorTest.testAlfred() Tests event extraction from the King Alfred
article

ExtractorTest.testEinstein() Tests event extraction from the Albert Ein-
stein article

ExtractorTest.testDateExtraction() Tests date extraction producing a histogram
of extracted dates

DuplicateRemoverTest.testSpotSig() Test the spot signature generation algorithm
implementation

IndexerTest.testIndexer() Tests the EventIndexer class and ensures
that articles can be found using the frontend
Searcher class

24

5.1.2 Website Unit Tests

To test the website server functionality the HTTP unit test framework “httpunit” [19]
was used which allows a unit test to check that the web server returns valid HTML when
sent various requests. For website load testing the Apache HTTP Server Benchmarking
Utility “ab.exe” [12] was used which makes multiple concurrent requests to a single URL
to test how the server software performs when under heavy load from multiple users.
The results of this load test can be seen in Figure 20.

Name Description

SiteTest.testInterface() Tests that the server presents the home-
page and that the server presents the
search interface

SiteTest.testAPI() Tests that the server presents JSON via
the REST13 search API

SiteTest.testFail() Tests that the 404 error is displayed for
an invalid URL

LoadTest.loadTest() Uses the Apache HTTP Server ab Utility
to test performance

5.2 Event Extraction Accuracy

An attempt to compare event extraction accuracy was made over four different Wikipedia
articles; “Christopher Columbus”, “Advanced Micro Devices”, “Alfred the Great” and
“Byte”. First the total number of events in each article was estimated by hand, and then
compared with the total number of extracted events output from the Perl prototype and
the final extractor to produce a percentage. The error measurement was measured by
hand looking for extracted events that contained only the date or treated a number as a
year, e.g. “18th November 1826.” and “AMD Virtualization is also supported by release
two (8200, 2200 and 1200 series) of the Opteron processors”.

Figure 17 shows the percentage of events extracted for the Perl prototype and the final
system compared with the total events that have been extracted by hand for each article.
The graph shows that the final extractor decreased the error rate compared with the
Perl extractor for the “Christopher Columbus” and “Advanced Micro Devices” articles,
though fewer events were extracted correctly. The final extractor handled the “Alfred
the Great” page much better due to the improved date extraction algorithm allowing for
dates before 1000 AD, however the weakness of this algorithm is shown in the “Byte”
page where the final extractor makes multiple mistakes incorrectly classifying a number
as a date. Since there are a large number of articles in Wikipedia the accuracy of the
extracted events is more important than the quantity, meaning that the final system is
an improvement over the prototype.

13Representational State Transfer

25

0

20

40

60

80

100

120

140

160

180

200

Christopher Columbus Advanced Micro
Devices

Alfred the Great Byte

%
 E

xt
ra

ct
e

d

Wikipedia Article

OpenNLP Extractor Error

OpenNLP Extractor Correct

Final Extractor Error

Final Extractor Correct

Perl Extractor Error

Perl Extractor Correct

Figure 17: Event Extraction Accuracy

Comparing the OpenNLP parser with the final parser the final parser handles pages
with dates below 1000 AD better than the OpenNLP parser but at the cost of a higher
error rate, with many more errors on more difficult pages such as the “Byte” article
and fewer extracted events on the “Advanced Micro Devices” page. However the im-
proved extraction performance on the important historical articles “Alfred the Great”
and “Christopher Columbus” means that the final system performs better than the
OpenNLP parser, but clearly further improvements could be made.

5.3 Event Extraction Performance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pa
ge

s/
Se

co
nd

Number of Cores

Stanford NER Extractor
OpenNLP Extractor

Figure 18: Extraction Performance over multiple threads

26

Figure 18 shows extraction performance between the OpenNLP parser and the Stanford
NER parser in the final system as the number of extraction threads increase. The
benchmarks were run on a 16 core Intel Xeon CPU with 47GB or RAM. The test was
run 10 times with the minimum, maximum and average extraction time shown for each
point.

This graph shows that for a 16 core machine the best extraction performance oc-
curs around 8 cores. The extraction times between the Stanford NER parser and the
OpenNLP parser are largely similar with the OpenNLP extractor providing slightly
higher performance which is balanced by the reduced extraction accuracy on the “Christo-
pher Columbus” and “Alfred the Great” articles shown in Figure 17.

Final System OpenNLP Map Reduce Prototype

Measure 1 66.9 s 86.3 s 41.0 s 21.6 s

Measure 2 67.5 s 83.6 s 41.0 s 19.4 s

Measure 3 64.2 s 92.5 s 40.0 s 20.7 s

Measure 4 65.0 s 101.8 s 40.0 s 22.2 s

Measure 5 69.6 s 89.7 s 38.9 s 20.4 s

Average 66.6 s 90.8 s 40.2 s 20.9 s

Result 14.1 pages/s 10.4 pages/s 23.4 pages/s 45.0 pages/s

Figure 19: Extraction Performance over all prototypes

Figure 19 shows the total extraction time for the first 940 articles from the Simple
English Wikipedia extracted on a Core 2 Duo 2.2GHz machine with 2GB of memory. The
extraction time was measured five times and then averaged and divided by the number
of pages to arrive at a pages per second measurement. The performance measurements
for the final system and the OpenNLP parser are lower than in Figure 18 because a
less powerful machine was used for the performance measurements. The extraction is
compared on a single thread ignoring the scalability of the processing framework and
the map reduce framework which can be distributed to process pages much quicker to
allow for a fair comparison with the Perl prototype.

The results show that the performance of the extraction system decreased as the com-
plexity of the event extraction algorithm increased, with the original Perl prototype
providing the best performance with the worst extraction accuracy. The Map Reduce
prototype halves the performance due to the increased overheads of the map reduce
framework, but this is balanced by the scalability of the map reduce framework. The
final system and the OpenNLP extractor give the worst performance but the best ex-
traction accuracy however again this is mitigated by the scalability of both systems onto
multiple cores as shown in Figure 18.

27

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

Av
er

ag
e

R
eq

ue
st

 T
im

e
(m

s)

Concurrent Requests

/
/search?test

/api/search/test
/cgi-bin/index.cgi

/cgi-bin/search.cgi?entity=3

Figure 20: Frontend Performance as the number of concurrent users increases

5.4 Frontend Performance

Figure 20 shows the average response time as the number of concurrent users increases
for different pages for the final system and the initial prototype. The benchmark was
run using the Apache HTTP Server benchmarking tool (ab.exe) [12] with 1 to 2048
concurrent users making 10 requests each on a Core 2 Duo 2.2GHz machine with 2GB
of memory.

The initial prototype (“/cgi-bin/index.cgi” and “/cgi-bin/search.cgi?entity=3”) is slower
than the final system but it appears to scale to many concurrent users well. The final
system returns the static pages (“/” and “/search?test”) in 1ms consistently however
the search API (“/api/search/test”) decreases in performance as the number of users
increases. Clearly this is would be the bottleneck if the website comes under heavy load,
and could be resolved by mirroring the website onto multiple web servers backed up with
a load balancer service [11].

6 User Evaluation

To evaluate the effectiveness of the final website a usability survey was conducted in the
form of a questionnaire which was based on the open qualitative and the quantitative
sample questionnaires found in the “User-Centred Web Design” book [8]. Members of
the general public were invited to participate and were recruited from the Wikipedia

28

user mailing list14, the History Teacher’s Discussion Board15 and the author’s personal
Facebook16 and Twitter17 accounts. The Wikipedia and History Teacher’s Forum were
selected since these sites have demographics that might use the WikiTime system.

To take part in the survey users were first asked to evaluate the WikiTime website18

taking as much time as they needed. Once they had finished evaluating the website they
were asked to enter their thoughts into the survey which used the iSurvey website [39].
The entire process was conducted online to avoid affecting users by observing them.

6.1 Usability Evaluation

Figure 21 shows the usability measures for the final interface, which were measured by
averaging user responses from statements such as “I feel it enhances and enables my
skills” from Question 2.1 in the questionnaire. Users were asked to respond on a seven
point scale where one meant that the user completely disagreed with the statement and
seven meant that the user completely agreed with the statement. These measures were
then averaged under a number of usability headings and rescaled to a percentage to
be displayed on the final graph. The error bars show the standard deviation for each
heading.

The graph shows that the main issues with the interface are the usefulness, i.e. the
results returned matched what the user was expecting, and the presentation of those
results, i.e. the user interface was easy to understand and results were presented clearly.
The presentation measure could be improved through a more thorough usability study
to discover what difficulties users are having, and further work to improve the timeline
layout and rendering. The usefulness of the results could be improved through further
research into the event extraction algorithm to remove incorrect events and a text sum-
mation algorithm to generate titles for each event. These improvements should bring
the overall usability to around 70-80% which is a standard usability target for this type
of system [8].

Another measure of usability is the length of time that users spent on the site, which ac-
cording to the site analytics averaged at two minutes per user, with some users spending
20-30 minutes, whilst the average time reported on the survey was twelve minutes. Fig-
ure 22 shows how the average site visit time and pages/visit increased as improvements
to the extraction algorithms and website were made during the project. In general a
higher number of pages/visit and site visit time indicates increased user engagement,
but this can be misleading since a low number of pages/visit combined with a low time
spent on the site can by typical of search engine sites [33].

14https://lists.wikimedia.org/mailman/listinfo/wikien-l
15http://www.schoolhistory.co.uk/forum/index.php?act=idx
16http://www.facebook.com
17http://www.twitter.com
18http://wikitime.ecs.soton.ac.uk

29

0

10

20

30

40

50

60

70

80

90

100

usefulness satisfaction presentation performance efficiency

%
 S

at
is

fa
ct

io
n

Usability Measure
Figure 21: Usability Survey

Figure 22: Average Site Visit Time

6.2 User Feedback

The final section of the questionnaire asked users about what they liked and disliked
about the website, and for any further comments that they had, which helped to highlight
usability issues with the user interface, some of which were fixed in later versions of the
website. Additionally some users made some suggestions for future improvements to the
site and of the concept.

Figure 23 shows the responses provided along with the number of users that suggested
them. Most users thought that the system was a good idea producing interesting results
with a good layout. The two main issues highlighted were first better integration with
Wikipedia since opening a Wikipedia page loses the timeline context and second the
slider at the bottom of the user interface caused confusion and difficulties with timeline
navigation. Additional problems were with mouse scrolling causing confusion because
it scrolls the timeline horizontally which goes against mouse scroll affordance [31] along

30

Statement Tally

Produces interesting results 4

A good idea 4

Difficult to use the bottom slider 4

Could be integrated better with Wikipedia 4

Good layout of results 4

Easy to use and accessible 3

Performance is very fast 2

Scroll bar scrolling horizontally is confusing 2

Bad layout, numbers are presented as dates 2

Bad layout, events can pile on top of each other 2

Bad layout, the information is too compressed 1

The icons need a legend 1

The next page button is confusing 1

Performance is too slow 1

Figure 23: User Survey Feedback

with issues with the timeline layout where the view is too zoomed out causing events to
stack on top of each other and finally issues with numbers being treated as years creating
noise in the display.

7 Project Management

A Gantt chart was created at the start of the project to break down the project into
smaller tasks and ensure that everything will get done. Figure 24 shows the initial Gantt
chart that was created. A lot of work done on the project so far took less time than
anticipated, allowing for an extension of scope from the originally envisioned project.
This increase in scope was reflected in the progress Gantt chart shown in Figure 25. The
completion of the project shown in Figure 26 largely went to schedule from that point,
with the evaluation stage taking longer and the extraction evaluation taking less time
than expected.

A risk assessment was also created at the start of the project to identify and mitigate
any project risks. These risks are shown in Figure 27 which identifies each risk and the
steps that have been taken to manage that risk. The Loss and Probability factors are
scored between 0-5 which gives an overall risk factor between 0-10, where a higher value
means higher risk.

31

Figure 24: Initial Gantt Chart

Figure 25: Progress Gantt Chart

32

Figure 26: Final Gantt Chart

Problem Loss Prob Risk Plan

Development machines may be
lost or damaged

5 1 5 Code, reports and documents
will be stored on bitbucket.org
using the mercurial version
control system.

Wikipedia goes down or be-
comes inaccessible

3 3 6 The entire Wikipedia ency-
clopaedia can be downloaded
allowing for processing offline.

Processing of Wikipedia pages
takes too long meaning only
part of the encyclopaedia is
displayed in the final system

2 4 8 Additional computers (such
as lab computers) could be
used to process the Wikipedia
pages. Alternatively sets of
related Wikipedia pages could
be processed instead.

Development of the event ex-
traction system takes too long

4 2 8 The project can be re-scoped
just to cover the event extrac-
tion system and run an analy-
sis on the quality of the events
extracted from pages.

Figure 27: Initial Project Risk Assessment

33

8 Conclusion

The project successfully demonstrates a final system that can extract historical events
from Wikipedia and display them on a searchable timeline automatically, allowing users
to gain an overview of a historical event or famous figure quickly and easily. The project
presents an algorithm that can extract dates from free text within a processing frame-
work allowing the processing of Wikipedia within a reasonable timescale, presenting the
extracted information to users within an easy to understand interface.

8.1 Further Work

Further improvements could be made to the extraction algorithm, such as better handling
of date recognition and extraction. One of the limitations of the algorithm is that it
doesn’t handle relative expressions e.g. “3 days ago” or “yesterday” which means that
many relative events are missed, a good example of this can be seen in Figure 17 for the
Christopher Columbus page. This could be improved by keeping track of the current
time in the algorithm, then extracting an absolute event when a relative time expression
is given, such as “yesterday” or when only a day and month are provided when the year
has been mentioned earlier in the page.

A further problem is the misclassification of numbers as dates for example “ATSC uses
188-byte MPEG transport stream packets to carry data.” is an event with the year
188 in the final system. This problem could be resolved by applying machine learning
techniques to build a system that can learn the difference between numbers and years.
The Stanford NER parser provides a seven class model which can recognize dates along
with time, location, organisation, person, money, and percent.

Additionally further work could investigate better handling of BC dates, since the algo-
rithm currently assumes that all BC dates have the text “BC” following the year which
introduces problems for date ranges, e.g. “300-500 BC”. Furthermore, very old dates
are ignored with the present algorithm such as “320 million years ago” which excludes
many biological, geological and astronomical events.

Another problem is when lots of events are mentioned in the same sentence such as
in the Abraham article extract in section 4.1.2. This could be fixed by splitting the
sentence into smaller fragments adding each individually, or adding the same sentence
once for each event, rather than the current implementation which selects the minimum
and maximum date mentioned in the sentence. The sentence could be split into smaller
fragments by separating the sentence by punctuation marks, however this would lose the
sentence context making the extracted event confusing.

The final problem is that the titles of the events are not concise, for example “Christo-
pher Columbus (unknown; before 31 October 1451 – 20 May 1506) was an explorer,
colonizer, and navigator, born in the Republic of Genoa, in what is today northwestern

34

Italy.” is provided as an event in the current system, which could be summed up as
“Christopher Columbus was an explorer, colonizer and navigator.” which shortens the
sentence allowing more information to be displayed on the timeline overall. This pro-
cess could be automated by using named entity extraction with connecting words (e.g.
was, is, he, she) to generate this summarized text automatically, perhaps moving the
automatically generated timelines closer to hand authored timelines.

Many issues with the user interface were identified in the user survey feedback shown
in Figure 23. One of the main issues identified was the inadequate integration with
Wikipedia. The current user interface provides a link back to the Wikipedia article
that the event was extracted from, which forces the user to search through the article
for the sentence and it also causes the timeline to disappear causing the user to lose
context.

Ideas to improve this could be explored, for example the timeline could be integrated
into the WikiMedia software itself as an extension [16] which would prevent the loss of
context. Alternatively the current user interface could display the current Wikipedia
article content in a frame at the bottom of the screen, highlighting the sentence of the
current event, which would allow users to get the context around the selected event.

The timeline scroll bar at the bottom of the screen could be easier to use, as many
users reported problems making sense of the scroll bar and understanding it’s utility,
so further work could identify these usability problems more thoroughly and attempt to
create a timeline interface that displays the events more clearly.

Further ideas for extensions include providing a linked data endpoint for the information
extracted from the WikiTime project, which would be provided in the RDF format.
This could allow the project to link into the DBpedia project enabling timelines to be
associated with the entities found within the DBpedia project, for example.

Finally the idea of producing timelines from Wikipedia could be extended to the rest
of the internet, allowing users to find historical information in a new, more structured
way than the present keyword search. However the size of the internet creates challenges
in scaling the system to process the large amounts of information involved, as well as
additional work in parsing and extracting information from the free text mentioned
on web pages. A further issue would be how trustworthy and accurate the information
extraction would be, for example timeline information extracted from a discussion board
is likely to be less trustworthy than information extracted from Wikipedia.

8.2 Evaluation

The main issues with the project are that some of the usability issues with the user
interface, such as the scroll bar at the bottom of the screen and some of the event
layouts were not resolved. The usability survey in Figure 21 gave an average satisfaction
of 65%, whereas a similar interface should expect a score of around 75-80% satisfaction

35

[8]. In hindsight the project should have produced an additional usability survey earlier
in the project using the feedback to show an improvement in usability between the
prototype and final user interface.

Another issue with the project was that more automated testing to evaluate the quality
of the extracted events could have been used, since most of the extraction quality and
performance measurements were taken during the project write up, rather than allowing
these measurements to inform software choices and quantitatively show the improvement
during the projects implementation.

To conclude, the major goals of the project as outlined in the project brief and progress
report were met. These goals were to conduct a review of existing algorithms and li-
braries, to build a system that can extract temporal events from Wikipedia and to display
those extracted events on a Timeline. Some extensions mentioned in the progress report
were also implemented, such as duplicate event detection and removal, an implementa-
tion of the page rank algorithm, and showing that the system could be scaled to the full
English Wikipedia rather than the Simple English Wikipedia.

36

References

[1] John Aberdeen et al. “MITRE: description of the Alembic system used for MUC-
6”. In: Proceedings of the 6th conference on Message understanding. MUC6 ’95.
Columbia, Maryland: Association for Computational Linguistics, 1995, pp. 141–
155. isbn: 1-55860-402-2. doi: http://dx.doi.org/10.3115/1072399.1072413.
url: http://dx.doi.org/10.3115/1072399.1072413.

[2] Abraham. 2012. url: http://en.wikipedia.org/wiki/Abraham.
[3] Stefano J. Attardi. Labels behind form fields (Attardi.org). 2012. url: http://

attardi.org/labels/.
[4] Christian Becker. “DBpedia - Extracting structured data from Wikipedia”. In:

Presentation at Wikimania 2009, Buenos Aires, Argentina, 2009.
[5] Hal Berghel. “Cyberspace 2000: dealing with information overload”. In: Commun.

ACM 40 (2 1997), pp. 19–24. issn: 0001-0782. doi: http://doi.acm.org/10.
1145/253671.253680. url: http://doi.acm.org/10.1145/253671.253680.

[6] Tim Berners-Lee. Cool URIs don’t change. 1998. url: http://www.w3.org/

Provider/Style/URI.
[7] Sergey Brin and Larry Page. “The anatomy of a large-scale hypertextual Web

search engine”. In: Computer Networks and ISDN Systems 30 (1998), pp. 107–
117.

[8] John Cato. User-Centered Web Design. Pearson Education Limited, 2001. isbn: 0
201 39860 5.

[9] Tim Berners-Lee Christian Bizer Tom Heath. “Linked Data - The Story So Far”.
In: International Journal on Semantic Web and Information Systems (IJSWIS) 5
(3 2009).

[10] Robert Dale and Pawe l Mazur. “The semantic representation of temporal expres-
sions in text”. In: Proceedings of the 20th Australian joint conference on Ad-
vances in artificial intelligence. AI’07. Gold Coast, Australia: Springer-Verlag,
2007, pp. 435–444. isbn: 3-540-76926-9, 978-3-540-76926-2. url: http://dl.acm.
org/citation.cfm?id=1781238.1781295.

[11] Thomas Decker. Load Balancing. 2012. url: http://www2.cs.uni-paderborn.
de/cs/ag-monien/RESEARCH/LOADBAL/.

[12] Apache Software Foundation. ab - Apache HTTP Server Benchmarking Tool. 2012.
url: http://httpd.apache.org/docs/2.0/programs/ab.html.

[13] Apache Software Foundation. Apache Lucene. 2012. url: http://lucene.apache.
org/.

[14] Apache Software Foundation. Apache Lucy. 2011. url: http : / / incubator .

apache.org/lucy/.
[15] Apache Software Foundation. Apache OpenNLP. 2012. url: http://opennlp.

apache.org/.
[16] Wikimedia Foundation. Manual: Developing Extensions. 2012. url: http://www.

mediawiki.org/wiki/Manual:Developing_extensions.

37

[17] Brent Fulgham. Perl speed vs Java 7 speed — Computer Language Benchmarks
Game. 2012. url: http://shootout.alioth.debian.org/u32q/perl.php.

[18] Dan Gillick. “Sentence boundary detection and the problem with the U.S.” In:
Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics,
Companion Volume: Short Papers. NAACL-Short ’09. Boulder, Colorado: Associ-
ation for Computational Linguistics, 2009, pp. 241–244. url: http://dl.acm.
org/citation.cfm?id=1620853.1620920.

[19] Russell Gold. HttpUnit. 2008. url: http://httpunit.sourceforge.net/.
[20] Shih-Ting Huang, Tsai hsuan Tsai, and Hsien tsung Chang. “The UI issues for

the search engine”. In: Computer-Aided Design and Computer Graphics, 2009.
CAD/Graphics ’09. 11th IEEE International Conference on. 2009, pp. 330 –335.
doi: 10.1109/CADCG.2009.5246883.

[21] David François Huynh. SIMILE Widgets — Timeline. 2012. url: http://www.
simile-widgets.org/timeline/.

[22] Java Wikipedia API. 2012. url: http://code.google.com/p/gwtwiki/.
[23] Trond Grenager Jenny Rose Finkel and Christopher Manning. “Incorporating Non-

local Information into Information Extraction Systems by Gibbs Sampling”. In:
Proceedings of the 43nd Annual Meeting of the Association for Computational
Linguistics (ACL 2005) (2005), pp. 363–370. url: http://nlp.stanford.edu/

~manning/papers/gibbscrf3.pdf.
[24] Pawe l Kalczyński et al. “Time-Indexer: a Tool for Extracting Temporal References

from Text Documents”. In: ed. by Khosrow-Pour Mehdi. Information Resources
Management Association. Philadelphia: Information Resources Management As-
sociation, 2003, pp. 832–835.

[25] Pawel Jan Kalczynski and Amy Chou. “Temporal document retrieval model for
business news archives”. In: Inf. Process. Manage. 41 (3 2005), pp. 635–650. issn:
0306-4573. doi: 10.1016/j.ipm.2004.01.002. url: http://dl.acm.org/

citation.cfm?id=1063266.1063280.
[26] David Saff Kent Beck Erich Gamma. JUnit. 2012. url: http://junit.sourceforge.

net/.
[27] Erdal Kuzey. “Extraction of Temporal Facts and Events from Wikipedia”. In:

(2011).
[28] Jérôme Louvel. Restlet - RESTful web framework for Java. 2012. url: http :

//www.restlet.org/.
[29] Benjamin Arthur Lupton. JQuery History. 2012. url: https://github.com/

balupton.
[30] Eric Meyer. CSS Tools: Reset CSS. 2012. url: http://meyerweb.com/eric/

tools/css/reset/.
[31] Donald Norman. The Design of Everyday Things. Basic Books, 1988. isbn: 978-0-

465-06710-7.

38

[32] C. Okoli. “A Brief Review of Studies of Wikipedia in Peer-Reviewed Journals”. In:
Digital Society, 2009. ICDS ’09. Third International Conference on. 2009, pp. 155
–160. doi: 10.1109/ICDS.2009.28.

[33] Panalysis. Web Analytics - How to interpret time on site. 2012. url: http://www.
panalysis.com/web_analytics_time_on_site.php.

[34] M.F. Porter. “An algorithm for suffix stripping”. In: Program 14 (1980), pp. 130–
137. url: http://tartarus.org/~martin/PorterStemmer/.

[35] JQUERY UI PROJECT. jQuery UI - Home. 2012. url: http://jqueryui.com/.
[36] The JQuery Project. JQuery: The Write Less, Do More, Javascript Library. 2012.

url: http://jquery.com/.
[37] Daniel Rosenburg and Anthony Grafton. Cartographies of Time: A history of the

timeline. Princeton Architectural Press, 2011. isbn: 978-I-56898-763-7.
[38] Alberto Manuel Brandão Simões. Lingua::EN::NamedEntity Perl Module. 2011.

url: http://search.cpan.org/dist/Lingua-EN-NamedEntity/NamedEntity.
pm.

[39] University of Southampton. iSurvey - Online Questionaire Generation from the
University of Southampton. 2012. url: https://www.isurvey.soton.ac.uk/.

[40] Ashish Sureka, Pranav Prabhakar Mirajkar, and Kishore Indukuri Varma. “A rapid
application development framework for rule-based named-entity extraction”. In:
Proceedings of the 2nd Bangalore Annual Compute Conference. COMPUTE ’09.
Bangalore, India: ACM, 2009, 25:1–25:4. isbn: 978-1-60558-476-8. doi: http://
doi.acm.org/10.1145/1517303.1517330. url: http://doi.acm.org/10.1145/
1517303.1517330.

[41] Martin Theobald, Jonathan Siddharth, and Andreas Paepcke. “SpotSigs: robust
and efficient near duplicate detection in large web collections”. In: Proceedings
of the 31st annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. SIGIR ’08. Singapore, Singapore: ACM, 2008,
pp. 563–570. isbn: 978-1-60558-164-4. doi: 10 . 1145 / 1390334 . 1390431. url:
http://doi.acm.org/10.1145/1390334.1390431.

[42] Enrique Vallés and Paolo Rosso. “Detection of near-duplicate user generated con-
tents: the SMS spam collection”. In: Proceedings of the 3rd international workshop
on Search and mining user-generated contents. SMUC ’11. Glasgow, Scotland, UK:
ACM, 2011, pp. 27–34. isbn: 978-1-4503-0949-3. doi: http://doi.acm.org/10.
1145/2065023.2065031. url: http://doi.acm.org/10.1145/2065023.2065031.

[43] Jason Venner. Pro Hadoop. Springer, 2009. isbn: 978-1-4302-1943-9.
[44] Wikipedia. Battle of Hastings. 2011. url: http://en.wikipedia.org/wiki/

Battle_of_Hastings.
[45] Wikipedia. Special:Statistics. 2011. url: http : / / en . wikipedia . org / wiki /

Special:Statistics.
[46] Wikipedia. Wikipedia:Database download. 2011. url: http://en.wikipedia.org/

wiki/Wikipedia:Database_download.
[47] Sholomo Yona. Lingua::EN::Sentence Perl Module. 2011. url: http://search.

cpan.org/~shlomoy/Lingua-EN-Sentence-0.25/lib/Lingua/EN/Sentence.pm.

39

[48] Qi Zhang et al. “Efficient partial-duplicate detection based on sequence matching”.
In: Proceedings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval. SIGIR ’10. Geneva, Switzerland: ACM, 2010,
pp. 675–682. isbn: 978-1-4503-0153-4. doi: http://doi.acm.org/10.1145/

1835449.1835562. url: http://doi.acm.org/10.1145/1835449.1835562.

40

26
th

 February 2012 Version 1.0

Protocol

Study Title: WikiTime Evaluation

Researcher: Alex Parker (ajp3g08@ecs.soton.ac.uk)

Funder: Unfunded

Sponsor (if known):

Revision History

Revision Date Narrative

1.0 26th February 2012 Initial submission

Background

The WikiTime project is a software system that extracts historical events from

Wikipedia and makes these events available from a searchable timeline interface. The

intent of this study is to evaluate the usability of the WikiTime project and its

usefulness.

Method

To achieve this, a user evaluation will take place by asking participants to evaluate

the system online in their own time. Once the participant has evaluated the system

they are asked to answer a questionnaire about their experience using the tool. This

entire process will take place on the participant’s personal computer online.

Materials

The questionnaire that will be conducted for this evaluation can be found in the

appendix.

Participants

Members of the general public will be invited to participate in the questionnaire. The

survey will be targeted at participants who might be interested in the site, such as

those who use or write for Wikipedia or have an interest in history.

A link to the survey will be emailed in the Wikipedia user mailing list

https://lists.wikimedia.org/mailman/listinfo/wikien-l since this project might be of

interest to the English Wikipedia community, as well as the History Teacher's

Discussion Board http://www.schoolhistory.co.uk/forum/index.php?act=idx since

WikiTime could be of interest to history teachers as a teaching resource, finally if

recruitment is insufficient I will post survey links on my personal Facebook and

Twitter account.

26
th

 February 2012 Version 1.0

Procedure

Participants are asked to evaluate the system in their own time by following a link

from the consent page on iSurvey. Once they have completed the evaluation of the

site they answer the questionaire. The entire process is done on the participants

computer without any assistance or interference from any assistants or collaborators.

Statistical analysis

The answers given for the quantitative parts of the questionnaire will be aggregated

under categories to gives score for the usability of the system. A content analysis of

the textual responses for the qualitative parts of the questionnaire will be done to

provide a summary of the feedback overall. An attempt to look at the correlation

between the participant’s level of interest in history and level of education will be

made.

Ethical issues

There are possible ethical issues with asking for the participant’s level of education,

which is mitigated by the study size and the anonymous collection of the study data.

Data protection and anonymity

The level of education and interest in history is collected from each participant,

which might affect anonymity of the data, however the iSurvey software is used

which permits collection of anonymous unlinked data since there is no processing of

emails or names by the researcher.

The data collected will only be disclosed to myself and possibly my supervisor for the

purpose of analyzing and understanding that data. The results of this analysis,

including a selection of the opinions given will be published in my final report. The

data once collected will be encrypted during the study and deleted once the results

have been analysed at the end of the study.

WikiTime Evaluation Questionaire

Welcome Notice
Hi there,

Thanks for your interest in WikiTime! WikiTime is a website which presents all of the events in

history that are mentioned in the Wikipedia encyclopedia on a Timeline which you can search over.

This evaluation is intended to test the design, usability and usefulness of the site and your input will

be used to discover what about the site is good, what is bad, and any other opinions that you may

have. All data is collected anonymously and you must be 18 years or older to take part. There is no

obligation to complete this evaluation once started and you are free to leave at any time. The data

collected is anonymous and will be stored at the University of Southampton and used for research

purposes. This questionnaire has been reviewed by the University of Southampton Ethics Committee

(reference number: xxxxxx)

Before starting this survey please evaluate the website first by visiting:

http://wikitime.ecs.soton.ac.uk/

Thanks for your time,

Alex Parker.

Section 1. About You

Question 1.1

Text:

What is your level of Education?

Responses:

One of the following options can be selected:

1. School Level (O-Levels, GCSEs, etc)

2. Further Education (A-Levels, BTECs, NVQs)

3. Undergraduate Degree

4. Postgraduate Degree

5. Doctorate

Question 1.2

Text:

Are you a member of a historical group or society that studies History?

Responses:

One of the following options can be selected:

1. Yes

2. No

Question 1.3

Text:

How interested are you in history?

Responses:

One of the following options can be selected:

No Interest Very Interested

1 2 3 4 5 6 7

Section 2. About the Site

Question 2.1

Text:

Please read the statements below and score each with a number between 1 and 7 to indicate how

true the statement is for you.

Response:

A response scaling from 1 to 7 is indicated for each statement.

Totally Disagree 1 2 3 4 5 6 7 Totally Agree

I feel it enhances and enables my skills.

I never felt lost on this system.

I always feel in control using it.

I found it a waste of my time.

I found nothing new or interesting in this system.

It is very easy to understand straight away.

I could always find what I wanted quickly.

I will tell my friends positive things about it.

It was always clear what would happen when I clicked on
something.

The results returned matched what I expected.

I found the visual presentation excellent.

The system was coherent and consistent.

I learnt something new with this system.

I found it very useful.

I found the performance too slow.

Section 3. Your Comments

Question 3.1

Text:

How many minutes were you on the website?

Response:

The participant indicates how long they spent on the website in minutes in the box.

Question 3.2

Text:

Would you expect to use the site again?

Response:

One of the following options can be selected:

1. No

2. Sporadically

3. Periodically

4. Regularly

Question 3.3

Text:

What did you like about the site?

Response:

The participant provides textual feedback.

Question 3.4

Text:

What did you dislike about the site?

Response:

The participant provides textual feedback.

Question 3.5

Text:

Do you have any further comments on the site?

Response:

The participant provides textual feedback.

Completion Notice
Thank you for taking the time to complete this questionnaire!

Extraction of Temporal Events from
Wikipedia
A system that extracts events from Wikipedia

By Alex Parker (ajp3g08@ecs.soton.ac.uk)

Supervisor: Dr Adam Prugel-Bennett (apb@ecs.soton.ac.uk)

Project Brief
This document outlines the basis for the project envisioned.

Problem
Wikipedia is a large source of information that can provide you with in depth knowledge
about a specific topic. However there is no intuitive way to see how events stored within
Wikipedia relate to each other over time, and there is too much information for it to be
categorised and linked by hand.

The relatively new fields of Information Extraction and Computational Linguistics pro-
vides a way to automatically extract this information within a reasonable timeframe. Hence
this project aims to automate the extraction of times, dates and named entities from sen-
tences within Wikipedia.

The main issues with automatic information extraction is the quality and accuracy of the
information given the wide range of meanings found in English, such as how dates and
times are described. Other problems are with the description of an event as events can be
a single event, or can span a range of times, or have multiple occurences. This project will
not be interested in events without any date or time.

The proposed system will attempt to extract and semantically link events, remove dupli-
cates and enter them into a search engine. A website frontend will be produced that will
query the search engine and display the events on a timeline, linking the events back to
the relevant Wikipedia pages.

Goals
1. Conduct a review of existing algorithms and libraries that could be used to gather

temporal events from free text such as the OpenNLP, FreeLing, and MALLET li-
braries.

2. Extract temporal events by parsing free text collected from Wikipedia, either col-
lected by a web crawler or by downloading the encyclopaedia and processing it
offline.

3. Create a web service that allows you to search and browse wikipedia by events on a
Timeline.

1

Appendix D: Software CD

Directory Listings

README.txt - Describes how to use the software!

/common - Classes shared between the extraction and website

src/ - Common source folder

lib/ - Dependencies shared between the website and extraction system

/mapreduce - The event extraction system

ner.ser.gz - Classifier used by the Stanford NER parser

Extractor.jar - Tool that runs the event extraction processes

src/ - Source folder

lib/ - Java libraries and project build dependencies

/site - The website that displays timelines

ab.exe - Apache HTTP Server Benchmarking Tool

index.html - Home page HTML

search.html - Search page HTML

Site.jar - Website server executable

src/ - Server source code folder

lib/ - Website libraries and project build dependencies

static/ - CSS layout, images, icons and Javascript code and libraries

47

